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Abstract

In this work we investigate the linear viscous stability of thermally stratified plane Poiseuille channel flow over a

compliant surface. This problem is posed as an �Orr–Sommerfeld-like� eigenvalue problem which is coupled to an

energy equation. The Chebyshev collocation spectral method is used to solve the eigenvalue system. The critical

Reynolds numbers, wavenumbers, wavespeeds, and curves of neutral stability are obtained for a wide range of com-

pliant wall parameters and buoyancy parameters. These results are discussed and compared with results from related

studies on thermally stratified flow between rigid flat plates (plane Poiseuille flow).

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In this paper we consider the stability of flow with a

parabolic velocity profile between two walls (the upper

wall being solid and the lower wall is compliant). The

walls of the channel are maintained at different tem-

peratures to create a temperature gradient (and buoy-

ancy) in the flow field.

The work presented here is an extension of the work

of Gage and Reid [8] to include wall compliance. Gage

and Reid [8] investigated the stability of thermally

stratified plane Poiseuille flow in a channel with rigid

walls. This work was later extended to other velocity

profiles (asymptotic suction boundary layer and an in-

flexion-point profile) by Gage [7]. By plotting marginal

stability curves using fixed values of a dimensionless

buoyancy parameter, the Richardson number (Ri), Gage

and Reid [8] and Gage [7] showed that the flow is ren-

dered stable by the application of a sufficiently strong

thermal stratification and rendered unstable in the case

of unstable stratification. The theory of Gage and Reid

[8] predicts that when Ri > 0:0554 the flow will be stable

and when Ri < 0:0554 the flow will be unstable to small

disturbances. The results of Gage [7] confirmed this

conclusion qualitatively, although the numerical values

were different from the results of Gage and Reid [8].

Further theoretical work on the stability of thermally

stratified viscous flow can be found in Herwig [10],

Herwig and Sch€aafer [11], Sch€aafer and Herwig [16],

Sch€aafer et al. [17] and Severin and Herwig [18] who

considered the effects of temperature dependent viscosity

on boundary layers and channel flows [16], Denier and

Mureithi [6], who considered weakly nonlinear wave

motions in a thermally stratified boundary layer; Denier

and Bassom [5] who worked on the influence of thermal

buoyancy on neutral wave modes in Poiseuille–Couette

flow. In all the afore-mentioned works the governing

momentum and energy equations were solved subject

to the usual ‘‘no-slip’’ boundary conditions for rigid

walls. In the current work we extend this problem to

include compliant boundaries. The introduction of wall

compliance in channel flows leads to stabilization of

Tollmien–Schlichting instability waves (see for example

[4]). This is the motivation to include wall compliance in

the current problem. The geometry of the problem under

study consists of a channel with one flexible wall and

the other being rigid. The main aim of this work is to
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describe the influence of wall compliance on the

Tollmien–Schlichting instability waves in channel flows

with thermal stratification using the numerical Cheby-

shev spectral collocation method.

Results from the numerical analysis of this work il-

lustrate the delicate physical and mathematical balances

controlling the Tollmien–Schlichting instabilities and

may have medical applications. For example, rigid in-

serts are sometimes used to reinforce blood vessels in the

treatment of cardiovascular diseases. The present work

may also be of relevance in technological applications

such as membrane bio-reactors, bio-mechanics and in

other pipe flow situations where stable laminar flows are

preferred (for example in the modelling of flow of body

fluids in the human body).

In the following sections the mathematical problem is

formulated, the numerical method of solution is outlined

and the results are presented graphically and discussed

qualitatively. A conclusion based on the summary of our

findings is also presented.

2. Mathematical formulation

We consider the flow of a viscous incompressible

fluid confined between the planes y ¼ �L=2. When the

effects of buoyancy are considered, the equations gov-

erning such a flow are the usual Navier–Stokes and

energy equations under the Boussinesq approximation.

The governing equations may be nondimensionalized in

terms of the channel half width, the undisturbed centre-

line speed and half the prescribed temperature difference

between the two boundary walls. The lower wall is

compliant and the upper wall is rigid. The flow quanti-

ties representing properties of small disturbances intro-

duced to the basic flow are assumed to be proportional

to exp iaðx� ctÞ, where x is the streamwise direction of

the flow, a is the wavenumber and c is the wavespeed.

The governing linearized equations (see [5,7,8,12]) are

iaðUB � cÞuþ v
dUB

dy
¼ �iap þ 1

Re
d2u
dy2

�
� a2u

�
; ð1Þ

iaðUB � cÞv ¼ � dp
dy

þ 1

Re
d2v
dy2

�
� a2v

�
þ Gh; ð2Þ

iaðUB � cÞh þ v
dhB

dy
¼ 1

PrRe
d2h
dy2

�
� a2h

�
; ð3Þ

iauþ dv
dy

¼ 0: ð4Þ

The quantities u, v, h and p are respectively the

streamwise velocity, normal velocity, temperature and

pressure. The variable y is the direction normal to the

walls. The Reynolds number is defined by Re ¼ UL=2m
and Pr is the Prandtl number defined as Pr ¼ m=j with L

being the channel half width, m is the kinematic viscosity,

U is the centre-line speed and j is the coefficient of

thermal diffusivity. The parameter G is a buoyancy pa-

rameter defined by G ¼ GrRe�3=2 where Gr is the Gras-

hof number defined as Gr ¼ gbL3Dh=m2 where g is the

acceleration due to gravity, b is the coefficient of volume

expansion, and Dh is the temperature difference between

the two walls. In the present problem, we assume that

the basic velocity and temperature profiles have the

simple forms UB ¼ 1� y2 and hB ¼ y respectively. In

terms of nondimensional variables the boundaries of the

channel are located at y ¼ �1 when the mean flow is

undisturbed.

By introducing the stream function wðx; y; tÞ ¼
/ðyÞ exp½iaðx� ctÞ� in the continuity equation (4), the

velocity components can be written in terms of the dis-

turbance profile as u ¼ /0ðyÞ, v ¼ �ia/. Using this def-

inition in Eqs. (1)–(3) we can eliminate u, v and p to

obtain

ðUB � cÞð/00 � a2/Þ � U 00
B/

¼ 1

iaRe
ð/0000 � 2a2/00 þ a4/Þ � Gh; ð5Þ

ðUB � cÞh þ h0
B/ ¼ 1

iaRePr
ðh00 � a2hÞ; ð6Þ

where the primes denote differentiation with respect to y.

3. Wall model and boundary conditions

We model the flexible wall as a spring-backed elastic

plate similar to that of Carpenter and Garrad [2] so that

the mechanical fluid pressure pw due to the normal dis-

placement of the compliant surface g is given in di-

mensionless form as

pw ¼ T
Re2

o2g
ox2

�M
o2g
ot2

� d
Re

og
ot

� B
Re2

o4g
ox4

� Kg
Re2

; ð7Þ

where M , d, B, T and K are the nondimensional plate

mass, damping coefficient, flexural rigidity, tension and

equivalent spring stiffness respectively. Details about the

derivation and the nondimensionalization leading to Eq.

(7) are given in ([2,4,9,15] for example).

If we express the wall displacement in normal mode

form as g ¼ ~ggeiaðx�ctÞ, we can write the linearized

boundary conditions at the compliant wall as

/0ð�1Þ þ gU 0
Bð�1Þ ¼ 0; ð8Þ

/ð�1Þ � cg ¼ 0; ð9Þ

hð�1Þ ¼ 0: ð10Þ

Eliminating g in Eqs. (8)–(10) gives

c/0ð�1Þ þ U 0
Bð�1Þ/ð�1Þ ¼ 0: ð11Þ
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Using the x-momentum equation (1), we infer that the

boundary condition for the pressure at the lower wall is

pwð�1Þ ¼ 1

iaRe
½/000ð�1Þ � a2/0ð�1Þ�: ð12Þ

From (7), (9), (12) we obtain�
� Ma2c2
�

þ idac
Re

�
þ 1

Re2
ðBa4 þ Ta2 þ KÞ

�
/ð�1Þ

¼ ic
aRe

½/000ð�1Þ � a2/0ð�1Þ�: ð13Þ

The remaining boundary conditions for the rigid upper

wall are

/ð1Þ ¼ /0ð1Þ ¼ hð1Þ ¼ 0: ð14Þ

Eqs. (5), (6), (11), (13), and (14) form an eigenvalue

problem

Lða; c;Re;GÞ ¼ 0; ð15Þ

that must be solved for the complex eigenvalue,

c ¼ cr þ ici for fixed values of Re, Pr, d, T , K, M , B, G
and a.

It is a well established fact in fluid mechanics that the

disturbances are temporally growing if the wavenumber,

a is real and the wavespeed, c is complex. When a is

complex and c is real, the disturbance waves are spatially
growing. Both temporally and spatially growing modes

are of significance in the study of Tollmien–Schlichting

instabilities found in flows over rigid and compliant

surfaces. In this study, however, we restrict ourselves to

temporally growing neutral modes.

For a given basic velocity profile UðyÞ, one or more

neutrally stable modes may be present. The (a;Re) plane
may then be divided into regions where ci < 0 and re-

gions where ci > 0. These regions are separated by the

the marginal stability curve ciða;Re;GÞ ¼ 0. Marginal

stability curves are obtained by finding solutions of Eq.

(15) for which both a and c are real. To establish that

these marginal stability curves represent the stability

boundaries, it is necessary to show that ci changes sign
when crossing the marginal stability curve.

We note that the eigenvalue problem will be nonlin-

ear in the eigenvalue c because of the boundary condi-

tion (13). Without loss of generality, the nonlinearity in

the problem can be avoided by settingM ¼ 0 in Eq. (13).

The case when M 6¼ 0 was considered by Davies and

Carpenter [4] in a related problem.

4. Solution method

To solve the eigenvalue system we adopt the

Chebyshev spectral collocation method. We expand the

solutions of the governing equations (5) and (6) together

with the boundary conditions (11), (13) and (14) as

truncated series of Chebyshev polynomials

/ðyÞ ¼
XN
k¼0

~//kTkðyÞ; ð16Þ

hðyÞ ¼
XN
k¼0

~hhkTkðyÞ; ð17Þ

where Tk is the kth Chebyshev polynomial and ~//k and
~hhk

are the Chebyshev coefficients. Inserting Eqs. (16) and

(17) into the governing equations we obtain a linear

eigenvalue system of the form

Að0Þ Að1Þ

Bð0Þ Bð1Þ

� �
U
H

� �
¼ c Að2Þ O1

O2 Bð2Þ

� �
U
H

� �
; ð18Þ

where

Ut ¼ ð ~//0;
~//1; . . . ;

~//N�1;
~//N Þ;

Ht ¼ ð~hh0; ~hh1; . . . ; ~hhN�1; ~hhN Þ;

Að0Þ ¼ UBðD2 � a2IÞ �U00
B þ i

aRe
ðD4 � 2a2D2 þ a4IÞ;

Að1Þ ¼ GI;

Að2Þ ¼ D2 � a2I;

Bð0Þ ¼ H0
B;

Bð1Þ ¼ UB þ i

aRePr
ðD2 � a2IÞ;

Bð2Þ ¼ I:

Here the superscript t represents the transpose, I is an

ðN þ 1Þ � ðN þ 1Þ identity matrix, O1 and O2 are

ðN þ 1Þ � ðN þ 1Þ matrices of zeros and D is the stan-

dard matrix differentiation operator defined in Canuto

et al. [1]. The vectors UB;U
00
B and H0

B are the values of

UB, U 00
B and h0

B evaluated at the collocation points and

placed on the main diagonal of an ðN þ 1Þ � ðN þ 1Þ
matrix of zeros. The collocation points used are the

Gauss–Lobatto points defined by

yj ¼ cos
pj
N

; �16 y6 1; j ¼ 0; 1; . . . ;N : ð19Þ

The boundary conditions are given by

~//0 ¼ ~hh0 ¼ 0; ð20Þ

XN
k¼0

D0k
~//k ¼ 0; ð21Þ

c
XN
k¼0

DNk
~//k þ U 0

Bð�1Þ ~//N ¼ 0; ð22Þ

~hhN ¼ 0; ð23Þ
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c

"
� i

aRe

XN
k¼0

D3
Nk

�
� a2DNk

�
~//k �

ida
Re

~//N

#

þ 1

Re2
ðBa4 þ Ta2 þ KÞ ~//N ¼ 0: ð24Þ

Since ~//0 and ~hh0 are known from Eq. (20) we infer that

the matrices AðiÞ
jk and BðiÞ

jk (i ¼ 0; 1; 2) and the boundary

conditions (21)–(24) need only be satisfied for

j; k ¼ 1; 2; . . .N . Also, because ~hhN is given explicitly in

Eq. (23), the matrices Að1Þ, Bð1Þ, Bð2Þ and O1 must be

satisfied for j ¼ 1; 2; . . . ;N , k ¼ 1; 2; . . . ;N � 1. This

amounts to deleting the appropriate rows and columns

of the differentiation matrix. The remaining boundary

conditions are incorporated in the original second,

(N � 1)th and Nth rows of AðiÞ (i ¼ 0; 1; 2) and second,

(N � 1)th rows of BðiÞ as illustrated in the matrix equa-

tion below:

which can be written as the generalized eigenvalue

problem

EY ¼ cFY; ð25Þ

where

Y ¼ ð ~//1; . . . ;
~//N ;

~hh1; . . . ; ~hhN�1Þt;

BC2 ¼ � i

aRe

XN�1

k¼1

ðD3
Nk � a2DNkÞ;

bc2 ¼ � i

aRe
ðD3

NN � a2DNN Þ �
ida
Re

;

S ¼ Ba4 þ Ta2 þ K:

The matrices ~AAðiÞ (i ¼ 0; 2) and eBBð0Þ are obtained by

evaluating the original matrices AðiÞ
jk for j ¼ 2; . . .N � 2,

k ¼ 1; . . . ;N and BðiÞ
jk for j ¼ 1; . . .N � 1, k ¼ 1; . . . ;N .

Similarly, ~AAð1Þ, eBBð1Þ and eBBð2Þ are obtained by calculating

Að1Þ
jk for j ¼ 2; . . . ;N � 2, k ¼ 1; . . . ;N � 1 and BðiÞ

jk

(i ¼ 1; 2) for j ¼ k ¼ 1; . . . ;N � 1.

It can be seen that the matrix F in Eq. (25) is singular.

If the generalized eigenvalue problem (25) is evaluated

as it is, physically meaningless eigenmodes of infinitely

large magnitude which interfere with the desired eigen-

modes are obtained. This problem can be overcome by

eliminating ~//1 by using the boundary condition (21) to

obtain

~//1 ¼ � 1

D01

D02
~//2

h
þD03

~//3 þ � � � þD0N�1
~//N�1

þD0N
~//N

i
; ð26Þ

D01 D02 � � � D0N�1 D0N
..
.

0 0 � � � 0 0

~AAð0Þ
..
.

~AAð1Þ

0 0 � � � 0 � S
Re2

..

.
0 0 � � � 0

0 0 � � � 0 �U 0
Bð�1Þ ..

.
0 0 � � � 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
..
.

eBBð0Þ
..
. eBBð1Þ

..

.

2666666666666666664

3777777777777777775

~//1
~//2

..

.

~//N�1
~//N

� � �
~hh1

..

.

~hhN�1

2666666666666664

3777777777777775

¼ c

0 0 � � � 0 0 ..
.

0 0 � � � 0 0

~AAð2Þ
..
.

0 0 � � � 0 0

..

. ..
. ..

. ..
. ..

. ..
.

BC2 BC2 BC2 BC2 bc2 ..
.

0 0 � � � 0 0

DN1 DN2 � � � DNN�1 DNN
..
.

0 0 � � � 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 � � � 0 0 ..

.

..

. ..
. ..

. ..
. ..

. ..
. eBBð2Þ

0 0 � � � 0 0 ..
.

266666666666666666664

377777777777777777775

~//1
~//2

..

.

~//N�1
~//N

� � �
~hh1

..

.

~hhN�1

2666666666666664

3777777777777775
;
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which is used to eliminate the first rows and first col-

umns of Ejk and Fjk (j; k ¼ 1; . . . ; 2N � 1). This is done

by defining

E11 ¼ E11;

E12 ¼ Ejk ðj ¼ 1; k ¼ 2; 3; . . . ; 2N � 1Þ;
E21 ¼ Ejk ðj ¼ 2; 3; . . . ; 2N � 1; k ¼ 1Þ;
E22 ¼ Ejk ðj ¼ k ¼ 2; 3; . . . ; 2N � 1Þ;
F11 ¼ F11;

F12 ¼ Fjk ðj ¼ 1; k ¼ 2; 3; . . . ; 2N � 1Þ;
F21 ¼ Fjk ðj ¼ 2; 3; . . . ; 2N � 1; k ¼ 1Þ;
F22 ¼ Fjk ðj ¼ k ¼ 2; 3; . . . ; 2N � 1Þ;
Y1 ¼ ~//1;

Y2 ¼ ~//2; . . . ;
~//N ;

~hh1; . . . ; ~hhN�1:

Using the above definitions, we can partition Eq. (25) as

follows:

E11Y1 þ E12Y2 ¼ 0; ð27Þ

E21Y1 þ E22Y2 ¼ cF21Y1 þ cF22Y2: ð28Þ

Eq. (27) can then be solved for Y1 in terms of Y2 as

Y1 ¼ �E�1
11 E12Y2 and this result is substituted into Eq.

(28) to give the ð2N � 2Þ � ð2N � 2Þ matrix eigenvalue

system

eEEY2 ¼ ceFFY2; ð29Þ

where eEE ¼ E22 � E21E
�1
11 E12 and eFF ¼ F22 �F21E

�1
11 E12.

Note that (29) does not suffer from eFF being singular.

Hence its eigenvalues can be computed efficiently by first

multiplying (29) by the inverse of eFF to give

ðeFF�1eEE � cI1ÞY2 ¼ 0; ð30Þ

where I1 is an identity matrix of size ð2N � 2Þ�
ð2N � 2Þ.

There exist many standard numerical methods to

solve equations like (29) and (30). Here we used the

generalized eigenvalue solver eig which is embodied into

the commercially available software, MATLAB.

5. Results

The stability characteristics of the flow are obtained

by solving the eigenvalue problem (29). The results

presented here were obtained when N ¼ 70 and Pr ¼ 1

and for different values of the buoyancy and wall pa-

rameters.

The numerical scheme used in the study was vali-

dated by computing the most unstable eigenmode when

Re ¼ 10000, a ¼ 1, G ¼ 0, K ¼ B ¼ T ¼ 1� 1011. This

choice of large wall parameters reduces the problem to

that of the rigid wall case. The most unstable eigen-

value for this choice of parameters was found to be

c ¼ 0:2375þ 0:0037i. This value corresponds to the

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

G = -0.02

G = -0.01

G = 0

G = 0.01

G = 0.02

α

Re

Fig. 1. Marginal stability curve for B ¼ T ¼ K ¼ 1� 107, d ¼ 0, G ¼ �0:02, �0.01, 0, 0.01, 0.02.
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result quoted by Orszag [13] in his study of Poiseuille

flow over rigid boundaries.

A curve of marginal stability in the (a;Re) plane was
also generated using G ¼ 0 and above values of K, B and

T . This gave a critical Reynolds number of Re ffi 5800

which occurs at a wavenumber of a ¼ 1:02. Critical

values obtained by Orszag [13] are Re ¼ 5772, a ¼ 1:021.
The accuracy of our numerical method can be improved

by increasing the number of collocation points. How-

ever, higher accuracy is achieved at the expense of a

significant increase in computational time. The Orszag

[13] results are widely used as a benchmark for validat-

ing numerical codes for the Orr–Sommerfeld equation

for plane Poiseuille flow. Fig. 1 shows marginal stability

curves for d ¼ 0, T ¼ B ¼ K ¼ 1� 107 and various

values of the buoyancy parameter G. It is apparent that
an increase in G reduces the critical Reynolds number,

that is, it destabilizes the Tollmien–Schlichting instabi-

lity waves. On the other hand, an increase in negative

buoyancy stabilizes the Tollmien–Schlichting instability

waves. Note that negative buoyancy is obtained when

the temperature difference between the two walls is

negative.

The Richardson number in Gage and Reid [8] is re-

lated to our buoyancy parameter G through G ¼ �4Ri
and consequently G < 0 denotes stable stratification and

G > 0 denotes unstable stratification. Thus, the results

presented in Fig. 1 are in line with the conclusions drawn

by Gage and Reid [8] and later by Gage [7].

In Fig. 2 we show the marginal stability curve for

fixed values of T , B, G and varying values of K. Fig. 2
shows that when the wall compliance is increased (by

reducing the magnitude of a compliant wall parameter)

the critical Reynolds number also increases. A similar

trend was observed when B was varied keeping T , K and

d constant, and when T was varied keeping B, K and d
constant. In Table 1 we present a summary of the results

of Fig. 2. Table 1 gives the critical values at which un-

stable modes begin to exist for various compliant wall

parameters when G ¼ 0:01, d ¼ 0 and Pr ¼ 1. This il-

lustrates that wall compliance stabilizes the Tollmien–

Schlichting instability waves thus confirming results

from earlier studies on compliant channel flows (for

example [4,14]).

The difference between the present results and earlier

reported results is that increasing the wall compliance

does not shrink the marginal stability curve in the range

of the Reynolds numbers given in the marginal stability

curves. In previous studies on similar plane channel

3000 4000 5000 6000 7000 8000 9000 10000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

K = 1 × 106

K = 1 × 107

K = 1 × 108

α

Re

Fig. 2. Marginal stability curve for T ¼ B ¼ 1� 107, d ¼ 0, G ¼ 0:01, K ¼ 1� 108, K ¼ 1� 107 and K ¼ 1� 106.

Table 1

Critical values of Re, a for G ¼ 0:01, B ¼ T and d ¼ 0

K T a� Re� (�104)

1� 108 1� 107 1.0229 4827.3

1� 107 1� 107 0.9940 4936.6

1� 106 1� 106 0.8257 5945.9
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flows over compliant boundaries (see, for example,

[4,14]) it was observed that the effect of wall compliance

is to shrink the marginal stability curve (within a small

range of Reynolds numbers) and cause it to close into a

single loop which disappears for sufficiently small values

of the wall parameters T , B and K. This may be attri-

buted to the introduction of buoyancy to the problem

which causes the marginal stability curve to start

shrinking at very large values of Re (see, for example,

Fig. 2 of [8] for the rigid wall case).

The effect of damping is depicted in Figs. 3 and 4 for

neutral modes and unstable modes respectively. Dam-

ping is seen to slightly destabilize the Tollmien–Sch-

lichting instability waves. Again, this is in agreement

with previous studies (see [4]).

In Figs. 5 and 6 we show typical plots of the growth

rate of the most unstable mode for fixed values of G, Re,
Pr and compliant wall parameters. The way in which

buoyancy and wall compliance affects the maximum

growth rate is of great significance because the most

rapidly growing mode is likely to dominate in experi-

ments [3]. The real part of the wave speed, cr, represents
the oscillations of the velocity perturbations and is an-

other quantity that could be potentially measured in

experiments.

Fig. 5 shows the variation of the growth rate against

the wavenumber for fixed values of B, K, d, Re and G,

and varying values of T . It is seen that as the tension

parameter T is decreased the growth rate also decreases.

This shows that an increase in wall compliance leads to

the attenuation of the most unstable mode of the

Tollmien–Schlichting instability waves. The same trend

was observed when B and K were varied, keeping the

other parameters fixed.

In Fig. 6 we show the variation of the growth rate

against the wavenumber for fixed values of B, K, d, Re
and T , and varying values of G. We note that the growth

rate increases as G tends to þ1 and decreases when G
tends to �1.

6. Summary

The Chebyshev spectral collocation method has been

used to investigate the linear stability of thermally

stratified flow in a channel with one compliant wall.

Curves of neutral stability and results showing the

variation of the maximum growth rate against the

wavenumber were obtained by solving eigenvalue rela-

tions. The effect of buoyancy is to destabilize the TS

instability waves when G > 0 (unstable stratification)

and to stabilize the TS instability waves when G < 0

(stable stratification). This is in agreement with earlier

studies of Gage and Reid [8] and Gage [7].
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Fig. 3. Marginal stability curve for T ¼ B ¼ K ¼ 1� 107, G ¼ 0:01, d ¼ 0 (––) and d ¼ 1000 (� � �).
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The effect of wall compliance was found to be qual-

itatively similar to the case when heat transfer is not

considered. In particular, it was observed that an in-

crease in the compliance of the wall (for example, de-

creasing the tension T or the the spring stiffness K) is

stabilizing and damping is weakly destabilizing for the

TS waves.
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